One-class SVM with non-linear kernel (RBF)
One-class SVM with non-linear kernel (RBF)
项目ID:4645
本项目分为2部分,第一部分为数据源,第二部分为OneClassSVM节点
数据源有四个输出,分别为X, X_outliers,xx, yy
- 数据源节点代码如下:
# coding=utf-8
import numpy as np
import suanpan
from suanpan.app import app
from suanpan.app.arguments import Npy
# 定义输出
@app.output(Npy(key="outputData1"))
@app.output(Npy(key="outputData2"))
@app.output(Npy(key="outputData3"))
@app.output(Npy(key="outputData4"))
def Demo(context):
xx, yy = np.meshgrid(np.linspace(-5, 5, 500), np.linspace(-5, 5, 500))
# Generate train data
X = 0.3 * np.random.randn(100, 2)
# Generate some abnormal novel observations
X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2))
return X, X_outliers, xx, yy
if __name__ == "__main__":
suanpan.run(app)
- OneClassSVM节点代码如下:
# coding=utf-8
import os
import matplotlib.font_manager
import matplotlib.pyplot as plt
import numpy as np
import suanpan
from sklearn import svm
from suanpan.app import app
from suanpan.app.arguments import Folder, Npy
TMP_FOLDER = "/tmp/result"
# 定义输入
@app.input(Npy(key="inputData1", required=True))
@app.input(Npy(key="inputData2", required=True))
@app.input(Npy(key="inputData3", required=True))
@app.input(Npy(key="inputData4", required=True))
# 定义输出
@app.output(Folder(key="outputData1", required=True))
def Demo(context):
args = context.args
if not os.path.exists(TMP_FOLDER):
os.makedirs(TMP_FOLDER)
X_outliers = args.inputData2
xx = args.inputData3
yy = args.inputData4
X = 0.3 * np.random.randn(100, 2)
X_train = np.r_[X + 2, X - 2]
# Generate some regular novel observations
X = 0.3 * np.random.randn(20, 2)
X_test = np.r_[X + 2, X - 2]
clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1)
clf.fit(X_train)
y_pred_train = clf.predict(X_train)
y_pred_test = clf.predict(X_test)
y_pred_outliers = clf.predict(X_outliers)
n_error_train = y_pred_train[y_pred_train == -1].size
n_error_test = y_pred_test[y_pred_test == -1].size
n_error_outliers = y_pred_outliers[y_pred_outliers == 1].size
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.title("Novelty Detection")
plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), 0, 7), cmap=plt.cm.PuBu)
a = plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors="darkred")
plt.contourf(xx, yy, Z, levels=[0, Z.max()], colors="palevioletred")
s = 40
b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c="white", s=s, edgecolors="k")
b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c="blueviolet", s=s, edgecolors="k")
c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c="gold", s=s, edgecolors="k")
plt.axis("tight")
plt.xlim((-5, 5))
plt.ylim((-5, 5))
plt.legend(
[a.collections[0], b1, b2, c],
[
"learned frontier",
"training observations",
"new regular observations",
"new abnormal observations",
],
loc="upper left",
prop=matplotlib.font_manager.FontProperties(size=11),
)
plt.xlabel(
"error train: %d/200 ; errors novel regular: %d/40 ; "
"errors novel abnormal: %d/40" % (n_error_train, n_error_test, n_error_outliers)
)
plt.savefig(os.path.join(TMP_FOLDER, "test.png"), format="png")
return TMP_FOLDER
if __name__ == "__main__":
suanpan.run(Demo)
1.异常点检测节点,接受上一个节点的四个输入,输出图片结果
第一步,创建OneClassSVM对象,使用前一个节点的数据进行训练
第二步,模型预测异常点
第三步,画出图形